Vanderbilt University
Institute of Imaging Science
VUIIS Logo

Zhongliang Zu, Ph.D.

Associate Professor

Contact Information

zhongliang.zu@vanderbilt.edu
(615) 875-9815

Interests

I am interested in molecular and functional molecular MR imaging using advanced MR sequences including chemical exchange saturation transfer (CEST), magnetization transfer (MT), spin-lock, and MRS spectroscopy, etc. and their applications in tumors, ischemic stroke, and neurological and muscular disorders.

Projects

I am working as a principle investigator and a co-investigator on multiple NIH-funded projects. Specifically, I developed novel MR techniques to detect abnormal glucose metabolism and extracellular pH in tumors, intracellular pH in stroke, and high-energy phosphate metabolism in muscular disorders by employing their chemical exchange effect. I also pioneered a study supported by NIH on a novel nuclear Overhauser enhancement (NOE) contrast that may reflect membrane choline phospholipids.

Publications

Zhongliang Zu*, Xiaoyu Jiang, Junzhong Xu, John C. Gore, "Spin-lock imaging of 3-o-Methyl-D Glucose (3oMG) in brain tumors", Magnetic Resonance in Medicine, 2018, DOI: 10.1002/mrm.27128

Zhongliang Zu*, Hua Li, Xiaoyu Jiang, John C. Gore, "Spin-lock imaging of exogenous exchange-based contrast agents to assess tissue pH", Magnetic Resonance in Medicine, 2018, 79(1):298.

Xiao-yong Zhang, Feng Wang, Tao Jin, Junzhong Xu, Jingping Xie, Daniel F. Gochberg, John C. Gore, Zhongliang Zu*, "MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4 T", Magnetic Resonance in Medicine, 2017, 78(2), 588.

Xiao-yong Zhang, Jingping Xie, Feng Wang, Eugene C, Lin, Junzhong Xu, Daniel F. Gochberg, John C. Gore, Zhongliang Zu*, "Assignment of the molecular origins of CEST signals at 2 ppm in rat brain", Magnetic Resonance in Medicine, 2017, 78(3), 881.

Xiao-yong Zhang, Feng Wang, Aqeela Afzal, Junzhong Xu, John C. Gore, Daniel F. Gochberg, Zhongliang Zu*, "A new NOE-mediated MT signal at around -1.6 ppm for detecting ischemic stroke in rat brain", Magnetic Resonance Imaging, 2016, 34; 1100.